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Abstract

We get the rigidity results for a class quasilinear p-Laplace type equation on the
sphere. Rigidity means that the elliptic equation has no other solution than some
constants at least when a parameter is in a certain range. This p-Laplace type equation
arises from the study of asymptotic behavior near the origin for the semilinear p-
Laplace equation on the punctured ball B (0) \ {0} C R"*!. Our result gives a positive
answer to L. Véron’s question in a paper (Véron in A geometric and analytic approach
to some problems associated with Emden equations. Partial differential equations,
Part 1, 2 (Warsaw, 1990), Banach Center Publ., 27, Part 1, 2. Polish Acad. Sci. Inst.
Math., Warsaw, 1992) and his book (Véron in Local and global aspects of quasilinear
degenerate elliptic equations: quasilinear elliptic singular problems. World Scientific,
Singapore, 2017) at page 440.

1 Introduction

In 1981, Gidas and Spruck [9] studied the Liouville type properties of nonnegative
solutions of the following semilinear elliptic equation

Au+u?=0 in R", (1.1)
in the range of 1 < ¢ < 2* — 1 where 2* = %, they obtained that the unique

solution must be the trivial one via the method of vector fields motivated by Obata
[12].
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In order to study the asymptotic behavior near the origin for the above Eq. (1.1) on
the punctured ball B (0)\{o} C R"*!, Gidas and Spruck [9, Theorems B.1 and B.2]
also investigated the following equation on the sphere S",

Au+u? —Au=0 on S". (1.2)

For the Eq. (1.2), under certain conditions on g and A, they proved the constant M%I
is the unique solution.

For the above semilinear equations on compact Riemannian manifolds, Bidaut-
Véron and Véron [3, Theorem 6.1] introduced the Bochner—Lichnerowicz—Weitzenbock
formula in such a way that they could extend and simplify Gidas and Spruck’s results.

Theorem 1.1 (Bidaut—Véron—Véron [3]) Assume (M", g) is a compact Riemannian
manifold without boundary of dimension n > 2, A is the Laplace-Beltrami operator
on M", g > 1,2 > 0 and u is a positive solution of

Au+u? —ru=0 on M". (1.3)
Assume also that the spectrum o (R(x)) of the Ricci tensor R of the metric g satisfies

—1 2
inf ey min o (R() 2 (g = Dh, g = . (14

Moreover, assume that one of the two inequalities is strict if M", g) is conformally

diffeomorphism to (S", go). Then u is constant with the value A 47T,

Such arigidity result has been extended in [10] and [11, Theorem 2.1] by Licois and
Véron, and in [2, Inequality (1.11)] by Barky and Ledoux. Each of these contributions
relies either on the Bochner-Lichnerowicz—Weitzenbock formula or on the carré du
champ method. In Dolbeault et al. [7] (see also [8]), they gave a new approach relies
on a nonlinear flow of porous medium/fast diffusion type which gives a clear-cut
interpretation of technical choices of exponents done in earlier works on rigidity.

Now we turn to the following semilinear p-Laplace equation

Apu+u? =0 in R (1.5)

In 2002, Serrin and Zou [14] proved that nonnegative solutions of Eq. (1.5) must be
zero by introducing a new vector field, for 1 < p <n+landp—1<g < p* —1

where p* = ;(17:_1122 Recently, using the differential identity of [14], Ciraolo et al. [5]
classified the positive energy finite solutions to (1.5) when g = ff:% — 1 in convex

cones with the help of some a prior estimates. One can find the recent results for the
critical p-Laplace equation in R” by Ciraolo and Corso [4] and Ou [13]. In Ciraolo
et al. [5], an important Lemma in [1, 6] for the research of p-Laplacian equations has
been used.

Now it is natural to study the rigidity result for the p-Laplace type equation on
compact manifold.

@ Springer



Liouville type theorem for a class quasilinear... 2275

In order to study the asymptotic behavior near the origin for Eq. (1.5) on the
punctured ball B;(0)\{o} C R"**+! Véron [16] made the following observation. With
the spherical coordinate (r, o), separable solutions of (1.5) under the form u(x) =
u(r,o) =r “w(o) exist, then w satisfies

p—2
=
div((af,)qwz + |Va)|2> Va)) + o'

p—2

2

—/\p,q(af,,qw% |Vw|2) w=0 on S, (1.6)

where
Apg=0pgn+1—apqq), a=ap,= —r
g+1-p

div and V are operators under the canonical metric on S".

Ifr,, <0,ie.p—1<gq =< %(_p;]); integrating equations (1.6) shows that
there exists no nontrivial solution to (1.6).

Forg = "”;ﬂ, which is the Sobolev critical exponent, it was observed by Véron
(see page 368 in [16] ) that (1.6) admits nonconstant solutions.

For 4,4 > 0, and %(f;]) <q < %, then for the Eq. (1.6) the positive
constant solution is

-1 1
Anpqg = (Olﬁ,q (n+1—apqq))iti-r.

In a paper [15] and his book [16] at page 440, Véron asked if all positive solutions
of (1.6) are constants A, p 4. In this paper, we give a positive answer to it.

(D (p=D np—ntp —_7
Theorem 1.2 For 1l < p < n and -—7;1:11:;;—— <qg < -—;;—-z;—- with Upg = 51;11:7; and

Apg =dpg(n+1—ap,4q), any positive solution to (1.6) is constant A, p 4.

In the research of p-Laplace equation [4, 13, 14], one always use integral by parts
method through introducing some parameters to get these results. In the proof of our
Theorem 1.2, we introduce three parameters, especially in (2.3) we add a new term in
the usual trace free term E ; which has not appeared in the earlier works on rigidity.
At last we use the Lemma from [1] or [6] to complete our proof.

The paper is organized as follows. In Sect. 2, we introduce some notations and
prove an integral equality. Then we use the integral equality through choosing these
parameters to prove Theorem 1.2 in Sect. 3.

2 An integral equality

In this section,we drive a useful equality.

Letw = v8, B # 0. Wedenote k = (B+1)(p—1)—Bq. O = (@*>+B2|Vu[?)2,
. _ . _ . . di XJ . . iV 2

;(;1 = QP X = (QP 7w, B =X} — w‘g,,( )gij,L;=Qp 2 BE .
en
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o o Xix!
qngw—%ﬁ. .1
and

; -1
L2 = 024y 2 v 2.2)
: n
We modify E ; to deal with the subcritical case. We set

Fi = E' + edivg(X')gij, 2.3)

for some ¢ # 0, which is F/’ = X’/ + (¢ — }l)divg(Xl)gij. Using the fact that L; is
trace free, we have

S 1
FiF] = Xix! + <n82 - ;) (X])7, 24

.. .. _ _ ViV B |VU|2
AL = gt = 02 @M - o T s
v nv

Then our Eq. (1.6) becomes
X — B+ D(p— Do Vo Qr=? — g~k 4 g7 hoP v =0. (2.6)
Multiplying (2.6) with v* X j and integrating on S", we get
‘/1ﬂxjxj—(ﬂ-+1xp-—1{/1ﬂ*HvURQP*2X§-ﬁ*‘/]ﬁ+“xj
+ﬁ”x/uﬁ4gwaxj=o, 2.7)

where a # 0 will be determined later.
After integrating by parts, we deal with the third term in (2.7) directly

—ﬂ‘lfv"“‘xf =ﬂ—‘<k+a>fv"+“—1|Vv|2Q"—2. 238)
Note that

(077 =@ + IVUD) T ] = (0 = 200" @Pvu; + Bruwy). (29)
J
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To be convenient, we set f = vv;v;v;; — |Vu[*, then the last term in (2.7) becomes

ﬂ_l)\' / va+1 Qp—Z(Qp—2vj)j

= _,371)\,(61 + 1)/U“|VU|2Q2P*4 _ 1371)\’/\ Ua+1(Qp72)j Qp—ZUj

—B @+ p-1 / VI VPP = (p — 2),3A/ e Q26 £,
(2.10)

For the first term in (2.7), we observe that (Ql’_zvj)ji = (Q”_Zvj),-j —Rjiv; Qr—2
where R;; is the Ricci curvature. So we have

/va(Qp—%,.)in =—a/v“—1QP—2|Vu|2X§ —/U“Ql"zvixjfl.
——a [ v 0r2velx] - [0 R0
+/v“Q2p—4Rjivjv,~
=-a / v QP VX + / v(QP 20 (@7 ;)i
+afv“*‘(QP*2uj)iQP*2v,~vj +/v“Q2P*4Rj,»vjv,-.

Invoking (2.4), the first term in (2.7) becomes

iy ) ha 1 yp=219., 12 yi n
/U“Xﬁle' :_m/va 0P~ 7| V| X;—l—m/va]eﬁvjvi

na _ _ —
—n—1+n252/va HQP )i QP P viv;
n arpipl
e | VR 1

The term v*T*~1|Vv|2QP~2 in (2.8) appears for the reason that the equation is not
homogeneous. It is desirable to eliminate it with some equalities. To deal with it, we
multiply the Eq. (2.6) with |Vv|?v?~!QP~2. Then for the third term in (2.7), we get

_ﬁ_I/Uk+aX§ :ﬁ_l(k+a)/va+k_l|VU|2Qp_2
— (k+a)/u“*‘|vU|2QP*2X,’I —(k+a)B+D(p—1)

/ Ua72|vvl4 Q2p74
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+(k+a),3’1)»/.v“|Vv|2Q2p’4. (2.12)

Recalling that k = (8 + 1)(p — 1) — Bqg and R;; = (n — 1)g;;, combining (2.10),
(2.11) and (2.12) with (2.7), we arrive at the following integral identity.

Proposition 2.1 [f v is a positive solution of the Eq. (2.6), then we have

2.2
—a+an‘e a—1,p-2 2 vi
— Vo= X;
(ﬂq+n_1+n282)/v 0" 2Vul?X]

na _ _ —
+7n_1+n282 /v“ LoP=2u0;(0P 2y
nn—1) /‘ 2 ap_d n / L.
| ————+Ap—-1-— VIV ————— | vFLF/
|:n—1-|—nze2 (P q)} VulrQ n—1+n2g2 jri

—~k+a)B+D(p—1) / V2Vt 02 — Ba(p - 2) f v Qb =0
(2.13)

To address the last term for p # 2, we need the following lemma.

Lemma 2.2 We have

/ W P2V (0P = —(a — 1) / V42Vl 02

-2
_—pli . /va_l(Qp_ZUj)iQp_zvin - 2_ 1052/UGQ2"_6J‘- (2.14)

Proof Combining

L.H.S=/v“*1Qp’2v,~vj(Qp*2w)t
=—(a—1) / Q> 2 V|t — f v QP )); QP v,
—/v“_1Q2p_4vivjvij
and

(0P 2v)); 0P Pvjv;
= 0¥ v + (p — 2 0%P 0P u|Vul* + B2 Vv v vgg)

= 0¥ v — (p — 22200 F 4 (p — 2 0P Ov v (@ + B2Vl
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= (p - DO *vjiviv; — (p—2)a*vQ* 7 OFf

we get (2.14). O

Therefore the last term in (2.13) becomes

g - [ty = PHLED [ortvupy]
LB = D=1

o?

Ua72|VU|4 Q2p74

+@ / v HQP )i QP vy (215)

We come to the following important integral identity.

Proposition 2.3 If v is a positive solution of the Eq. (2.6), then for any constants
&, B, a, we have

— 2.2 Mp—1 .
_ [—ﬂq + a-+an-e + ﬂ (p )}/Ua_lQp_2|Vv|2Xll-

n—1+4e2n? a?
T L e S P s /v“|Vv|2Q2"‘4
n— 14 n2e?

a? n—1+n2g2

Brip— Dia—1)
e

+</3)‘«p + na . )/Ua] Qpizvivj(Qpizvl‘)j

—(k+a)B+1(p— 1)} / V2 vt QP

" / W FLF. (2.16)

+n — 14+ n2e2

3 Proof of the Theorem1.2

In this section, through the choice of the constants ¢, 8, a, we analyze the coefficients
in (2.16). We prove |Vv| = 0, which implies |Vw| = 0, then we complete the proof
of our Theorem 1.2.

Using (2.5) in the third term in (2.16), we can rewrite (2.16) as

0= [—,3  Zatane +M(p_l)}/v“—lgp—zwvﬁxf

n— 14 g2n? a?

+[ ”(”‘,2 2 +x<p—1—q)”v“|Vv|2Q2”—4

)LP a apiyi
+< n—1+n22>vaij

IB)LP / a—1 p-2 2y
Vo~ X!
+< n—l+n 2g2 vOT IV,
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+[ﬂx<p _(112)(0_1) _(k+a)(ﬂ+l)(p_1)}/va_z|w|4sz—4

" /U“F;:Fij. 3.1

n—1+n2e2

To be convenient, we set

BAp na
M — o? + n—1+n2e?
- 2n
n—14n2g?

By (2.2), we get the following crucial integral identity.

2.2
—a +an‘e AMp—1 A a _ _ i
0= |:—ﬂq+ L PP =D Prp p+]fv“ L0P=2|vu|? X!

n—14¢e2n2 o? ne? n—1+n2g2
+[% +ap—1 —q)]/v“\Vv|2Q2p_4

n
+n— 1 4+ n2¢2

1 (Barp na 2h—1+n2>H -1
+|:_Z(aT n—1+n282) n n

+/3)»(17 - 12)(0 -D

f v (Fi+ ML (F) + ML)

o

—(k+a)(B+ 1(p — l)}/v“_ZIVvI“QQ”_“- (3.2)

Here we have only four terms but three parameters B, a, ¢, we shall choose them
properly to cancel three terms.
First, we choose ¢ to make

nn-—1)

n—1ga2e TP ITO=0 G

then from (3.3) we know the coefficient of the second term in identity (3.2) is zero.
To see this is possible, we show that

Lemma 3.1 If the constants p, q, o« and ) satisfy the conditions in the Theorem 1.2,
then we haven + A(p — 1 —¢q) > O.

Proof Recall that A =a(n+ 1 — ag) and ¢ = , then we need to show

_pr
q+1—p
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which holds iff

pg ___mptp—n
gt+1l—p p

The above inequality is reduced to

(1—=p)n—p)g>A—p)np+ p—n),
which is correct since ¢ is subcritical,

m+Dpp—-D+1
q < .

n—p
[m}
_ —_ 1 1
Now we take ¢ = [%‘Ep)ﬁ)]z (n — 1)2n~! then we get
—A 1—
n2e? = [n (g + 12) n—1, (3.4)
AMg+1—p)
and
n AMg+1—p)
= . 3.5
n—1+4n2g2 n—1 (35
Second, we set a = 3, and take ¢ to make
by tn’e? AMp—1
AL =0. 3.6
no? Q+n—1+n282 a? (3.6)

From (3.6), we eliminate the first term in the identity (3.2).
By substituting ¢, we take

(-2 D_Ap "
= (q a? na2> n—ig+1-p) 37

Now we simplify (3.7).

_ n+tl
Lemma3.2 Infactt = =
Proof First we have
1 2
n—xg+l—-p)=—77—|@G+1—pn—pg+1-pm+1)+pyq
g+1l-p
=—[anr(l—P)n—(p—l)(qul—P)(n+1)
g+1—p
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2282 D.Lin, X.-N. Ma

—(q+1—p)(n+1)+q+(p2—1)q}

p—1

=—[1—(61+l—p)(n+1)+(p+1)q}
g+1-—p

And we can get

AMp—1) Ap
"1T T2 T2

nnt+1l—-ag)(p—1) m+1—ag)p

=nqg —
o o
:nq_n+1—aq _nt+l—ag)(p—1) m+1-ag)(p-1)
o o o
_nqa—n—1+aq m+1—-—ag)(p—1DHn+1)
o o

_@a—=-Dm+1) m+l-—ag)(p—DHn+1)
N o B o

n+1

= [qa—l—(nJrl—aq)(p—l)}
o

_n+1[(q+1)(p—l)
o« q+1—p

—(n+1—ag)(p - 1)i|

n+1 (p—1
= 1- 1 1- .
” (q+1_p)[q+ (n+1D(g + p)+pq}

O

Now we substitute ¢ and @ = "L into the coefficient of [ v*~2|Vu[*Q2P~4,
and we shall find 8 such that the coefficient of the last term in the identity (3.2) also
vanishes.

We set the coefficient of f V4 2|Vu|*Q%P~* in (3.2) equals g(B), where

_ 1 /Brp na 2(n—l-f—nzez)(n—l) Br(p—1(a—1)
g(ﬁ)__1<? n—1+n282> *
—k+a)(B+D(p—-1
__L(Lp n+u(q+1—p)>2 (n— 1) g2 Mp =D @t D)
T 4n \a2 o n—1 Mg+1—p) a? o
(n+Dp-1
o

n n 0[2

ﬁ2

—(p=1DB+q(p—1)p% - B>

1 -1 AMp —1
_eADeoD MDDy o
o o

+q(p—DB
— (=D
For this quadratic function, we have the following lemma.

Lemma 3.3 3!8y, such that g(Bo) = O.
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Proof Since g(B) is a quadratic function, we show that its determinant identically

vanishes, which is

) +17?
[_T—Z(p—l)+q—L] (p—172
o o

Lo L ntlMg+1-p\ =D ap-—
s 17 - o ( )

+q(p—1) —(p—1)?

_<n+1>(p—1)]:0.
o

We simplify it term by term, first we have
A n+1
~ S 2(p-DHg———
o o
_—m+D@+1-p)+pg

Dn+1
o? o n—1 Mg+1-—Dp) o? a
(3.8)

4+ D@+1-p)

2(p=D+gq
P P
2(n +1 +1-—
S )(Z P 4 2g+1-p)
_2p=—n=D@g+1-p)
P
Second,
Ap m+DAg+1-p)
— +
o o n—1
n—+1
=(n+1—aq)(q+1—p)[l+n_1]
2n
=m+l-ag)qg+1-—p——:.
n—1
We compute
L (p ntlMa+1-p) 2 m-1?
4n \ a? o n—1 Mg +1—Dp)
1 4n? (n—1)72
__ 1 — aa)? 1 — p)2
4n(n+ ag)” (g +1—p) =i 1= p)
_n(n+1-ag)g+1-p)>
p )
Third,

Mp—D+1)  (m+1—ag)(p—Dn+1)(g+1—p)?
a3 - P2 )
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Last,

e+ Dpp=D  @+D(p-D@+1-p)
o o p ’

After some computations, (3.8) is equivalent to

(p—n—D*q+1-p> na+l-ag)g+1-p?
2

p p
(n+1—aq)(p—D@n+1)(g+1-p)?

+ p2

_(+D(p-D@+1-p)

+@+1-p(p—1=0.
P

. . 2 .
M'ultlpl}'lmg qup andusing(n+1—ag)(q+1—p)=(@+1—p)(n+1)— pgq,
it is equivalent for us to show

(p—n—D*g+1=p)—pnlg+1—p@a+1)+p°nig+1-p)+p*n(p-1)
+m+Dp—Dn+D@g+1—p) —m+D(p—Dplg+1-p)
+(+D(p—Dp—p)—pp—Dn+D+p*(p—1) =0,

which holds iff

G@+1=plp—1-n?—pnn+1)+p’n+@n+1D*p—1)
+(n+(p—1pl=0,

which is correct by direct computation.

In fact,
1 —p)? 2(p— Dip — 1
g(ﬁ)z_(nJr - p) 8+ (p—Dlp —(n+ )]ﬂ_(p_l)z‘
o (07
We can choose
p(p—1)

Bo =

i+ 1-p)g+1-p)
O

After taking Bo such that g(89) = 0, then the first term, the second term and the last
term in (3.2) are canceled. At last we get the following result.

Proposition 3.4 Ifv isapositive solution of the Eq. (2.6), then for the above determined
constants g, B, a we have

- n i Ne 2 j
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To deduce the desired results, we cite a key Lemma from [1] or [6].

Lemma 3.5 Let the matrix A be symmetric with positive eigenvalues and let Ayin and
Amax be its smallest and largest eigenvalue, respectively; let B be a symmetric matrix,
then

A 2
trace(AB(AB)T) <n < max) trace((AB)2).

min
Now we show

Lemma 3.6 FJ’: + ML; = (AB);j where A, B satisfy the conditions of the above
Lemma.

Proof From the definition of F j‘:, Li. in the beginning of Sect. 2, we have

. : - 1 v M|Vv>
Fi+ML; = (QF 2Ui)/+<8_—>ngu+M —Lgr2 p—~ —— 0" g

= 0" *(p — 2B, vir + (@7 + B Vo]
| .
+(p—2)0F~ 4a2vv,vj + <g — —) ngij +lev/ or—2
n v

M|V 072
nv

= (N1 + No)ij,

where (N1);; = QP *[(p — 2)B*vivjvir + (@*v* + B2V )]
We rewrite

Ni = N3Ny,

where (Na)ij = QP %vij, (N3)ij = (p — 2)%&3{2

Vol 2

+ &ij, N3 is positive

define with eigenvalues 1 and 1 4 (p — 2) From basic linear algebra we

W
have
) BVl vivj
Ny DY =8 —
N3 i = 0 = P = ) (i ~ DBVl Vol
Then

N1+ N2 = N3(Ny + N3 ' No).

By direct calculations, N5~ 'N, is also a symmetric matrix.
Setting A = N3, B = N4 + N3_1N2, we have done. O

Now we prove the following last lemma.
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2286 D.Lin, X.-N. Ma

Lemma3.7 |Vv| =0.

Proof By Lemmas 3.5, 3.6 and Proposition 3.4 we have
i i _
Fj + MLj =0,
which is
E| +¢eXjgij+ ML}, = 0.

By taking trace we have

Then

iy J n i J n 2p—4
OZ/X;X.jZn_le}Ei +m/RijUinQp .

Following the method of Lemma 3.6, one can show that f ELE l/ > (0, which forces
that |[Vv| = 0. Then we get v is constant and complete the proof of Theorem1.2. O
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